If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^+7x^2+4x=0
We add all the numbers together, and all the variables
7x^2+7x=0
a = 7; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·7·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*7}=\frac{-14}{14} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*7}=\frac{0}{14} =0 $
| r/2=17 | | 6r^2-13r-63=0 | | 1/4x-13=2 | | 5x^2-14=31 | | 6r^2-13r+63=0 | | 4x/3+x=28 | | 90=75+x | | 2/r=17 | | 6r^2+13r+63=0 | | 67+61+3x+10=180 | | 5r=17 | | 7y-5=61 | | -11x+8=-11+2.5 | | -3+5v=-28 | | 4x+14=10x+80 | | –8+4u=3u | | {x}{4}=4 | | 6=w+40/9 | | 5r-6=2r | | (4x+30)+(2x-10)=80 | | 3s-4=3 | | 11=8+3p | | 204=31-w | | 47x-48x+3x= | | 4t-5+3t=-13+2t-2 | | -5-6x=-35 | | 3x-5=7.25 | | 89=(6x+5) | | 63=q+44 | | -1/2=-1/5x+2/3 | | 14-1.5x=23 | | 8x+34=192 |